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Thermocapillary convection arising in small-depth layers (long horizontal cavities) 
subject to a horizontal temperature gradient is studied numerically. A broad range 
of values of the Reynolds-Marangoni number, Re, is considered for three values of 
the aspect ratio (A  = length/height). For the largest aspect ratio considered, A = 
25, the fully developed Poiseuille-Couette solution is reached, but only for moderate 
Re. The limiting Re value for the observability of such a fully developed solution is 
derived as a function of A(Re < 20A). For Re < 20A, the flow exhibits three dis- 
tinct regimes, in the upwind, central and downwind regions, respectively. The 
Poiseuille-Couette solution (when it exists) fills the central region, and the flow is 
accelerated, in the upwind region, to reach this Poiseuille-Couette solution at  a 
distance that is proportional to Re. In the downwind region, where the flow is 
deflected by the endwall, a multi-roll structure is exhibited for Re 3 1330. The 
number of rolls increases with Re. When Re > 20A, the upwind and downwind 
regions coalesce and some of the downwind rolls can be suppressed. Most of the 
computations concern interfacial conditions (with fixed temperature distribution) for 
which the dynamical solution is decoupled from the thermal one. A few thermal 
solutions are given herein, for Pr = 0.015 only. 

1. Introduction 
This study is devoted to horizontal layers of fluids a t  low Prandtl number, Pr, in 

a long rectangular cavity whose vertical endwalls are maintained a t  different 
temperatures. Our main motivation is to study the velocity field prevailing during 
the growth, from their melts, of metal and semiconductor crystals (such as GaAs) in 
long horizontal open boats (e.g. by the Bridgman technique). We consider situations 
in which the depth of the melt is small enough to ensure the dominance of the 
thermocapillary forces over the buoyancy forces. The necessary conditions for this 
dominance can be estimated through the previous works reviewed by Ostrach (1982) 
and the results given by Napolitano (1982) by an order of magnitude analysis. 

Numerous studies have been devoted to the onset of Marangoni convection in long 
horizontal layers but subject to a vertical temperature gradient (even in the case of 
coupling with buoyancy convection). These studies include experimental, theoretical 
(stability) and numerical approaches. Among these are Pearson (1958), Nield (1964), 
Scriven & Sterling (1964), Smith (1966), Ostrach (19760, Castillo & Velarde (1982), 
Cerisier et al. (192), Sen & Davis (1982), Platten & Legros (1986), Velarde, Garcia- 
Ybarra & Castillo (1987), Winters, Plesser & Cliffe (1988) and Benguria & Depassier 
( 1989). 
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Several papers address the problem of steady and oscillatory convection in liquid 
columns with free cylindrical surfaces as they occur in the floating zones technique, 
especially for the case of a microgravity environment (see e.g. Chun 1980; Schwabe 
& Scharmann 1981, 1988; Cowley & Davis 1983; Preisser, Schwabe & Scharmann 
1983; Fu & Ostrach 1983; Xu & Davis 1984; Napolitano & Monti 1987, and 
Kazarinoff & Wilkowski 1989). Thermocapillary convection also plays an important 
role in the Czochralski technique, as shown by Balasubramaniam & Ostrach (1984). 
For the problems of surface-tension-driven convection in connection with materials 
processing, the reviews by Carruthers (1977), Rosenberger (1979), Pimputkar & 
Ostrach (1981), Polezhaev (1984), Avduyevsky et ul. (1984) and Langlois (1985) are 
relevant. 

For open-boat systems, there are several ways in which a free liquid-gas interface 
can modify the convection in the bulk, depending on whether the interface is allowed 
to be deformed or remain flat, and whether or not i t  is subject to stresses induced by 
surface-tension gradients. Strictly speaking, when a liquid layer is subject to volume 
or surface convection, interfaces with the surrounding gas cannot be planar ; this was 
demonstrated by Yih (1968). Several works have been devoted to deformed 
liquid-gas interfaces; see Pimputkar & Ostrach (1981), Sen & Davis (1982), Strani, 
Piva & Graziani (1983), Cuvelier & Driessen (1986), for instance. Nevertheless, the 
assumption of a planar liquid-gas interface is still often used ; it seems appropriate 
for metallic melts as the capillary number is generally small in this case. 

I n  the case of thermocapillary convection in layers with large horizontal extent 
and with small horizontal (constant) temperature gradients, C,,, the flow far from the 
vertical endwalls can be expected to be plane parallel (Poiseuille-Couette flow 
solution) as shown by Birikh (1966); in this case the relevant parameter is the 
Reynolds-Marangoni number, Re = - (acr/t%”) G ,  H2/(pu2) .  Experiments in paral- 
lelepiped cavities with such large horizontal dimensions have been done by 
Kirdyashkin (1984). He found that for long cavities (length = 412 mm; height = 
9.4 mm) filled with ethyl alcohol (4.5 < Pr < 5.5) and for high Marangoni numbers 
(Mu x 1.1 x 104, i.e. Re = Mu/PT x 2 x lo3), the flow largely exhibits a plane-parallel 
pattern, for 120 mm < y < 300 mm. 

By applying linear stability theory to the basic Poiseuille-Couette-flow solution 
(given below by expression (9)) and taking a fixed heat flux (defined by the Biot 
number, Bi) as thermal boundary conditions along the horizontal surfaces, Smith & 
Davis (1983) found oscillatory instabilities that take the form of two hydrothermal 
waves (with angles +@ and - @  with respect to the negative y-axis) propagating 
obliquely to  the direction of the surface flow. For low PT, the mechanism for 
instability involves a transfer of energy from the horizontal temperature gradients 
of the basic state to the perturbations, through horizontal convection. In particular, 
Smith & Davis give neutral stability curves for the insulating case (Bi = 0). They also 
state that an increase in Bi always results in a more stable system; thus Bi = 0 
minimizes the critical Marangoni number, Mu,, for the onset of unsteady flow. For 
Pr = lopa, Mu, is close to  2, and behaves as Pri when Pr goes t o  zero ; thus the critical 
value of Re increases as Pr-i when Pr+O. For Pr = 0.015 (where Mu, = 9 ;  i.e. Re, = 
600), @ is close to 77”; this corresponds to an instability in the form of nearly 
longitudinal rolls (with axes nearly aligned in the direction of Gh). At the threshold 
the wavelength, A,, is close to 19H and the frequency (non dimensionalized by v / H 2 )  
is close to 2.4. Such instabilities can only be observed in large-width cavities. Note 
that this minimum width increases as Pr + 0. For a recent review of thermocapillary 
instabilities see Davis (1987) and Smith (1988). 



Thermocupillary convection in layers with a horizontal temperature gradient 79 

An asymptotic theory (for A -too) has been developed by Sen & Davis (1982) and 
by Strani et al. (1983). In addition, Strani et al. (1983) performed numerical 
simulations and derived aspect-ratio conditions to get parallel flow in the core of the 
cavity (A 2 4). The nonlinear effects which tend to destroy this parallel flow have 
been found to reach a contribution exceeding 10% for Re > 100. 

A specific case where the surface tension presents an extremum with the 
temperature has been studied by Legros, Petre & Limbourg-Fontaine (1983) and 
Villers & Platten (1987) for aqueous solutions (Pr close to  7) in long horizontal 
cavities (2 < A  < 10). 

Thermocapillary and buoyancy convection in a rectangular container have been 
investigated for silicone oil (Pr = 9200) by Ochiai et ul. (1984) who performed 
experiments for moderate Ma (Ma < 50) and for aspect ratios of order one (0.5 < 
A < 2). For small buoyancy forces (typically Ra < loo), the dominant thermo- 
capillary forces lead to a flow pattern which is quite symmetric with respect to the 
vertical midplane ( y  = $4). This is probably because the Reynolds-Marangoni 
number Re is very small (Re x 0.005) ; the flow structure is quite simple and therefore 
well predicted by numerical simulation. 

For intermediate Pr, namely Pr = 1,  Polezhaev et al. (1981) studied the ‘radial’ 
segregation induced by the thermocapillary convection in rectangular cavities of 
moderate aspect ratio (A = 1 and A = 2). They obtained a one-cell solution for 
Ma = lo2, lo3 and lo4. Napolitano, Golia & Viviani (1984) considered the transient 
thermocapillary convection in small-aspect-ratio cavities ( A  = 0.25 and A = 1)  for 
Re’ = 1000 (note that Re’ = A-2Re), for which the (vertical) deep-layer approxi- 
mation applies for the steady state ; the surface velocity is essentially constant in the 
central part of the cavity (60% of its length). 

Concerning low-Pr fluids, some computations have been done for a square cavity 
( A  = 1)  by Wilke & Loser (1983) for Si melts (Pr = 0.026) at Mu = 7 x lo2 and N a  = 
7 x lo3 (Re = 2.7 x lo4 and Re = 2.7 x lo5 respectively), in the case of non-constant 
driving forces (sinusoidal temperature distribution) on the upper surface ; steady 
solutions were obtained with a one-cell and a three-cell structure, respectively, for 
these two Ma values. Srinivasan & Basu (1986) also considered a sinusoidal 
temperature distribution for laser melting of iron, performing computations for 
Pr = 0.1, 0.2 < A < 5 and 4 x lo2 < Re < lo4. For square cavities ( A  = l ) ,  the 
maximum horizontal velocity increases linearly with Re for Re < lo3, and as Re: for 
Re > 5 x lo3. For cavities subject to a monotonic horizontal temperature gradient, 
only a few results are available a t  present (see numerical studies by Zebib, Homsy 
& Meiburg (1985) for square cavities, Bergman & Keller (1988) for moderate aspect 
ratios (0.5 < A  < a), and Ben Hadid et al. (1987) and Villers & Platten (1989) for 
A = 4). Measurements of the surface velocity, performed for liquid tin (Pr = 0.015) 
by Camel, Tison & Favier (1986), show a linear increase of the velocity with Re in the 
range 0 < Re < lo3; while at higher Re the velocity increases less rapidly than 
linearly. 

Experimental visualization of the structure of the shear-driven isothermal flow in 
an open cavity of A = 3.5 by Neary & Stephanoff (1987) shows that a single vortex 
with a diameter approximately equal to the depth of the cavity develops downstream 
of the geometric centre of the cavity. As the Reynolds number rises owing to an 
increase of the external (free stream) velocity, two supplementary vortices appear ; 
a counter-rotating vortex due to the flow separation forms close to the bottom wall 
and a corotating one appears upstream of the primary vortex. This visualization is 
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FIGURE 1. The two-dimensional model of an open rectangular cavity. 

for water (Pr x 7).  Visualizations of the flow structure for low-Prandtl-number fluids 
are not known to the authors. 

The aim of the present paper is to fill a gap by analysing the two-dimensional 
thermocapillary convection in an open rectangular cavity for A = 4, A = 12.5 and 
A = 25. The upper surface of the fluid, which is subject to  a shear due to  the change 
in surface tension, is assumed to remain flat. We assume no buoyancy (9 = 0, or 
Gr = 0) in order to  uncouple the buoyancy and thermocapillary effects. In  addition, in 
most of the computations we consider a linear temperature distribution along the 
free surface. I n  that case, with constant aT/ay and constant aa/aT, the flow is driven 
by a prescribed stress, and the dynamic and thermal fields become uncoupled. We 
shall mainly consider the dynamical problem which is similar to the one studied by 
Bye (1966) who also emphasized the stability analysis of the Poiseuille-Couette (mid- 
basin) solution with respect to  ‘upwind’ and ‘downwind’ disturbances. In  the 
following, we shall adopt this terminology, in which the upwind region is closer to the 
hot wall, and the downward region is closer to the cold endwall (for a ‘normal’ 
thermocapillary effect, i.e. when h / a T  < 0). 

The assumption of fixed temperature distribution along the free surface is 
reasonable only for small Pr and small Re. The time-dependent two-dimensional 
NavierStokes equations are numerically solved by using a finite-difference 
technique. The energy equation (which is uncoupled in most of the applications 
considered herein) is only computated for Pr = 0.015. The work’presented herein is 
a part of a much broader study devoted to  metallic melts, made in the framework of 
the Doctorate Thesis by Ben Hadid (1989). 

2. Formulation of the problem 
We consider an open rectangular cavity, of height H and length L (with aspect 

ratio A = L/H greater than unity), having two differentially heated vertical endwalls 
a t  temperatures q and T,, with T, > 7 (see figure l),  and filled with a fluid of low 
Prandtl number, Pr = V / K ,  where v and K are respectively the kinematic viscosity 
and thermal diffusivity. As soon as AT = T2 - q differs from zero, a thermocapillary- 
driven flow is generated owing to the temperature-induced change in the surface 
tension, u, along the upper horizontal surface. The flow strength is characterized by 
the Reynolds-Marangoni number defined as Re = - (aa/aT) G,H2/(pv2) ,  where p is 
the density and G, = AT/L. Sometimes, we shall also use the Marangoni number 
defined as Ma = Pr Re. 

2.1. Two-dimensional governing equations 
The velocity is assumed to be small enough to  consider the flow as laminar. In 
addition, the fluid is assumed to be Newtonian and incompressible. We shall consider 
the continuity and Navier-Stokes equations with the stream function and vorticity 
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($ and Q) formulation ; and we shall take tref = P / v  and vref = ( v / H )  Re as time and 
velocity scales. So, we have $ref = vRe and a,,, = ( v / H 2 )  Re as stream-function and 
vorticity references. 

Thus, the governing equations can be written as 

with 

The energy transport equation is then 

8,+Re(uOz+v8,) = Pr-' (8,,+8,,), 
where 6 = (T-q)/T,,,, with qet = AT/A. (4) 

2.2. Boundary conditions 
(i) On the rigid walls (x = 0, y = 0, y = A ) :  

u = v = o ;  ( 5 )  

(ii) on the upper boundary (x = 1) which is assumed to be flat we have 

u = 0, 

and according to Birikh (1966), the equilibrium condition is 

av/ax = - a q a y  

(iii) on the isothermal vertical walls we have 

e,,,,, = 82 = A ; B ( , , A )  = 61 = 0, (7 ) 
(iv) while on the horizontal boundaries we consider two kinds of thermal conditions ; 
either 

ex = o (insulating) 

or 8 = A - y (' perfectly conducting '), ( 8 b )  
We can recall that in the case (8 b)  we have a pure fluid flow problem, because the flow 
is driven by a prescribed stress (6), as av/i3x is constant. 

2.3. InJinitely long cavity, A +co (Birikh solution) 
For the case of an infinitely long cavity (finite H and infinite L) ,  a steady one- 
dimensional flow solution exists for low Re, such that u = 0 and v = v(z). 

Accounting for the mass flux conservation in a vertical plane (j: v dx = 0) and the 
conditions (5 )  and (6), the PoiseuillAouette solution applies for the longitudinal 
velocity (see Birikh, 1966) : 

A vertical temperature profile, T(x) ,  can be associated with v(x), such that 8(x, y) = 
T(x) + (A - y) ; T(z)  is derived from (4) and (9), by integrating 

= PrRev8, = -1&a[3x2-2x]. 

v ~ ~ ( x )  = a ( 3 ~ - 2 )  X. (9) 

T,, = 

So, for insulating horizontal surfaces, the condition (8a) can be written as 

TpC(5) = - &flu (3x4 - 4z3 + 0.4) ; (10 a )  

Tpc(x) = -&&a (3x4-4x3+x). (lob) 

while, for conducting horizontal surfaces, the condition (8 b )  becomes 
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Grid meshes 31 x 161 35 x 201 37 x 251 

Re x lows +nax (vsurrlrnax +max (vsnrr)max $,ax (Vsurr)max 

3.333 0.05156 0.2556 0.05153 0.2557 0.05153 0.2548 
5.0 0.04700 0.2375 0.04741 0.2364 0.04729 0.2347 
6.667 0.04329 0.2227 0.04403 0.2210 0.04383 0.2189 

TABLE 1. Characteristic flow results for A = 25 

Expressions 10a, b )  show that the temperature variation in the vertical direction 
(and thus the temperature stratification in this direction, aB/ax) is proportional to 
Ma. 

3. Numerical finite-difference method 
The derivation of the discretized two-dimensional equations is not given here but 

it follows the approach described elsewhere (Roux et al. 1978; Ben Hadid 1989). The 
numerical technique used to solve the system (1)-(8) is an extension to purely 
unsteady equations of the pseudo-unsteady algorithm described in detail in the two 
papers cited above and used to improve the rate of convergence of the iterative 
process induced by the nonlinearity and the coupling of the governing equations. The 
main features of this numerical technique are: 

(i) an alternating direction implicit (ADI) method for solving the finite difference 
equations (l), (2) and (4), 

(ii) a second-order central differentiation for spatial derivatives for (1) and (4), 
(iii) a fourth-order compact Hermitian method for (2), and 
(iv) internal iterations to adjust the values of 4 at every iteration. 
The block-tridiagonal matrix inversion algorithm (Thomas algorithm), resulting 

from the use of high order Hermitian finite-difference relationships, was employed for 
(2). The vorticity at the boundary was calculated with the third-order relationship 
(known in the literature as Hirsh’s relationship) and already used for natural 
convection problems by Roux et al. (1979). We included a compatibility condition for 
variables on boundaries a t  the intermediate time level (Fairweather & Mitchell 
1967); and an iterative process at each time step. The convergence criterion was 
based on the vorticity variation a t  the boundary. A solution of the Navier-Stokes 
equations is considered to be converged when the variation of the (reduced) vorticity 
a t  the boundary is less than 0.01%. 

The grid size effect has been controlled for the largest cavity, A = 25, by 
comparing the results obtained with three different non-uniform grids (with 31 x 161, 
35 x 201 and 37 x 251 points, respectively). Details about the grid influence on the 
main characteristics of the flow (maximum of the stream function, @,,, and 
maximum of the surface velocity, (vsurf)max) are given in table 1. 

Table 1 shows that, for Re = 6.667 x lo3, the maximum variations of +,,, and 
(vsurf)max with respect to the grid change are less than 1.5% and 2% respectively. 
Thus, a satisfactory accuracy can be reached with the intermediate grid (i.e. with 
35 x 201 points), in the case of A = 25. The majority of the solutions reported in the 
present paper correspond to a non-uniform grid with 31 x 91 points for A = 4, 
31 x 161 points for A = 12.5, and 35 x 201 points for A = 25. A non-uniform grid is 
needed not only for the usual grid refinement near the boundaries (rigid walls, or 



Thermocapillary convection in layers with a horizontal temperature gradient 83 

FIQURE 2. Streamline patterns in the conducting case for various Reynolds-Marangoni 
numbers. (a) Re = 3.33 x lo2; ( b )  6.67 x lo*; (c) 1.33 x lo3; (d )  6.67 x 103; (e) 3.33 x 10". A = 4. 

upper free-surface subject to shear stress), but also to account for the non-symmetry 
of the flow (between upwind and downwind regions). The finest grid size, which is 
used near the downwind endwall, is about three times smaller than the one 
corresponding to a uniform grid. The grid size is gradually increased away from the 
boundaries. The numerical experiments were performed for various values of the 
time step, which depends on the number of grid points, the local refinement close the 
sidewalls and the value of the Reynolds number. As a rule the time step is decreased 
when Reynolds number is increased. The majority of the solutions reported in this 
paper are obtained with a time step ranging from 1 x to 5 x 

4. Results and discussion 
We have considered thermocapillary convection for both insulating and con- 

ducting thermal boundary conditions on the horizontal surfaces. Computations are 
performed for three values of the aspect ratio ( A  = 4, A = 12.5 and A = 25) and for 
a wide range of Reynolds-Marangoni numbers (1 < Re < 5 x lo4), where the lowest 
Re  considered is below the threshold value obtained from the stability results of 
Smith & Davis (1983). 

4.1. Conducting horizontal surfaces (at A = 4) 
The flow structure evolution can be seen in figure 2 for five selected values of Re 
( 3 . 3 3 ~  lo8; 6 . 6 7 ~  lo2; 1 . 3 3 ~  lo3; 6.67 x lo3 and 3 . 3 3 ~  104). At lower Re, a 
concentrated vortex forms near the cold wall, the strength of which increases with 
Re. Above Re  = 1.33 x 103, a counter-rotating cell occurs in the lower part of the layer 
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FIQURE 3. Isotherm patterns in the conducting case for various Reynolds-Marangoni numbers. 
(a) Re = 3.33 x lo2; ( b )  6.67 x lo2; ( c )  1.33 x lo3; (d )  6.67 x 10'; ( e )  3.33 x 10'. A = 4. 
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FIGURE 4. Maximum of the horizontal velocity component v,,, vs. Re;  for conducting and 
insulating cases. A = 4. 

and eventually moves to the hot endwall. The strength of this secondary flow also 
increases with Re. The corresponding isotherm patterns are shown in figure 3 ; these 
isotherms appear to be only slightly affected by the bulk flow, except for the highest 
Re value (Re = 3.33 x lo4) in the region of the strong primary vortex near the cold 
wall. 
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FIGURE 5. Maximum of the stream function Ym,, vs. Re; for conducting and insulating cases. 
A = 4. 

FIGURE 6. Streamline patterns in the insulating case for various Reynolds-Marangoni numbers. 
(a) Re = 3.33 x 102; (b)  6.67 x 101; (c)  1.33 x 108; (d) 6.67 x 10s; (e) 3.33 x l@. A = 4. 

The evolution of Ym,, and vmBx is plotted in figures 4 and 5 in terms of Re; an 
asymptotic behaviour is found for high Re. 

The computed flow structure can be compared to the experimental results 
obtained by Neary & Stephanoff (1987) for a shear-driven isothermal flow in an open 
cavity of A = 3.5 and for a Reynolds number, based on the leading-edge distance, of 



86 H .  Ben Hadid and B. Roux 

RQURE 7. Isotherm patterns in the insulating caae for various Reynolds-Merangoni numbers. 
(a) Re = 3.33 x lo2; (a) 6.67 x lo2; (c) 1.33 x lo3; (d )  6.67 x 103; ( e )  3.33 x 1P. A = 4. 

11300 (see their figure 3), which is equal to Re = 3630 with our definition. Their 
observations, which are obtained for water (Pr x 7), agree qualitatively with the 
stable multicell structure we have found for A = 4, and for Re = 1.33 x 103 and Re = 
6.67 x 103 (see figures 2 ( c )  and 2(4, respectively. But one must be cautious about 
such comparisons, because of the difference in the value of the Prandtl number 
between metallic liquid and the transparent fluid (water) used in the experiment. 
Indeed, the coupling between flow and heat transfer is stronger for high Prandtl 
number and would significantly influence the flow structure for large Re. This remark 
is also well supported by the numerical calculations of Zebib et al. (1985) which show 
that the Prandtl number has a rather significant effect on the flow structure in a 
square cavity; the centre of the single vortex located in front of the vertical 
isothermal cold wall for Prandtl number equal to 0.001 is in front of the hot 
isothermal vertical wall when the Prandtl number is set equal to 50. 

4.2. Insulating horizontal surfaces (at A = 4) 

For insulating horizontal boundaries, the flow patterns shown in figure 6 are quite 
similar to the one presented in figure 2 for conducting boundaries. Similarly, the 
isotherm patterns in figure 7 present only small differences with respect to those in 
figure 3, except near the cold wall, in the region of the strong vortex. The evolution 
of Y,,, and v,,,, again plotted in figures 4 and 5 as a function of Re, also present an 
asymptotic behaviour, as for the conducting case. One sees that the specific nature 
of the horizontal boundaries, conducting or insulating, does not play an important 
role in the range Re < 5 x lo4. 

In figure 8 we compare the numerical v-velocity profile across the layer at  y = $4 
with the analytical solution given by (9) for infinitely large A .  For Re = 66.7, figure 
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(a) Re = 66.7, (b)  Re > 66.7. 
FIGURE 8. Vertical profile of the horizontal velocity component v(z) a t  y = for A = 4:  

8 (a )  shows an excellent agreement with the non-dimensional analytical profile (9) 
which is independent of Ma and Pr (but we recall that the reference velocity is 
proportional to Re = Ma/Pr).  In figure 8 ( b )  we can see that the v-profile, at  y = 14, 
rapidly differs from the analytical one when Re is increased. I n  addition, the value 
of v at II: = 1 differs increasingly from the analytical value 0.25. The evolution of the 
velocity at the surface (x: = 1) along the y-direction is presented in figure 9, in the 
interval 0.5 < y/A < 1, with increasing Re. The curves shows a maximum closer to 
the cold endwall, the (non-dimensionalized) value of which decreases because of an 
increasing endwall effect (near the cold wall). One can also see that the surface 
velocity does not reach the asymptotic value of 0.25. The v-profiles for Re = 
1.33 x lo3 a t  y/A = 0.5 and y/A = 0.85 are compared in figure 10 to the analytical 
one; the flow pattern, for moderate A,  differs rapidly from the analytical one and 
becomes strongly y-dependent. 
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FIQURE 10. Vertical profile of the horizontal velocity component w(z) at y / A  = 0.5 and 
# / A  = 0.85; for A = 4 and Re = 1.33 x 109. 

Summarizing, we see that for small Re (Re !z 67) the flow pattern presents three 
regions : a central one which corresponds to a fully developed Poiseuille-Couette flow, 
an upwind one in which the flow is accelerated to reach this Poiseuille-Couette 
solution and a downwind region in which the flow is decelerated and stopped by the 
endwall at y = A .  When Re increases, the length of the region of fully developed 
Poiseuilldouette flow is reduced and eventually disappears, and then the upwind 
and downwind regions coalesce. 

4.3. Conducting horizontal surfaces (at higher A )  
We also performed computations for higher values of the aspect ratio (namely A = 
12.5 and A = 25). Because of the similarity found in 84.2. for the two different types 
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FIGURE 11, Streamline patterns in the conducting case for various Re at A = 12.5. (a) Re = 66.7; 
(b )  3.33 x lo2; (c) 6.67 x lo2; (d )  1.33 x lo3; (e) 2 x los; (f) 3.33 x lo3; ( 9 )  5 x  lo3; (h)  6.67 x lo3; 
( i )  1 x 1 0 4 ;  (j) 1.33 x 104; (IC) 2 x 104. 

FIGURE 12. Streamline patterns in the conducting case for various Re at A = 25. (a) Re = 66.7; 
( b )  3.33 x lo2; (c) 6.67 x lo2; (d) 1.33 x lo3; ( e )  2 x loa; (f) 3.33 x lo3; (8)  5 x loa; (h)  6.67 x lo3; 
( i )  1 x 104; (j) 1.33 x lop; (k) 1.67 x 1 0 4 .  
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FIQURE 13. Velocity profile v(z) at y = L&4 for A = 12.5: (a) Re < 6.67 x lo2; ( b )  Re > 1.33 x 10s. 

of thermal boundary conditions, we considered here only the conducting case for 
which the velocity and temperature fields are completely uncoupled. 

The flow patterns for several values of Re and for A = 12.5 and A = 25 are given 
in figures 11 and 12, respectively. For small Re the flow patterns again present three 
regions, with the central one corresponding to the fully developed Poiseuille-Couette 
flow. But for these high values of A ,  the structure of the downwind region is more 
complex. At A = 12.5 (figure 11)  a second corotating vortex appears for Re 2 
6.67 x 102, the strength of which is observed to increase with Re. At A = 25 (figure 12) 
the two-cell structure again exists for Re = 6.67 x lo2, but for Re 2 1.33 x lo3 a third 
vortex is generated in the downward region, with the onset of a fourth roll a t  Re = 
5 x 105. 

For a better interpretation of the effect of the different parameters on this flow 
structure, velocity profiles across the cavity a t  y = $4 are given in figures 13 and 14 
for A = 12.5 and A = 25, respectively. For small Re, i.e. Re < 3.33 x lo2 a t  A = 12.5 
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FIQURE 14. Velocity profile v(z) at y = &I for A = 25: (a)  Re < 1.33 x lOa, (b)  Re 2 1.33 x lo8. 

and Re 4 6.67 x lo2 at A = 25, the solution is quite similar to the Poiseuille-Couette 
solution (9) (see figures 13a and 14a), while for higher and higher Re these velocity 
profiles differ increasingly from it (see figures 136 and 146). 

Correspondingly, the longitudinal evolution of the surface velocity, vsurl, a t  2 = 1 
is presented in figures 15-18 in order to show how the flow, which is subject to a 
constant shear stress, is accelerated along the cavity in the upwind region. 

For A = 12.5 and for small Re (figure 15a) the flow is shown to be rapidly 
accelerated and w, , ,~  is seen to asymptotically reach the value 0.25 at the mid-cavity 
(y/A = 0.5) for Re 167, and within a shorter distance for a smaller Re. A detailed 
view of the downwind region (0.8 < g / A  < 1) in figure 15 ( b )  reveals that vsurp slightly 
overshoots 0.25 near the endwall for Re > 167. But for Re > 2 x los the flow, which 
is still accelerated in the upwind region (figure 16a), slows down before reaching 0.25, 
when approaching the endwall (figure 16b); this confinement effect of the endwall 
increases with Re. 

4 FLM 221 
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FIQURE 15. Surface velocity versus y/A st A = 12.5 for various Re < 6.67 x lo2; 
(a) 0 < y/A < 0.5 (upwind) and (b) 0.8 < y/A < 1 (downwind). 

The same kind of behaviour of the vSurf curves in the upwind region is observed at 
A = 25, for values of Re about twice as large (see figures 17 and 18). This similarity 
suggests that the results can be correlated in terms of the distance y (from the 
upwind endwall) and of the reciprocal of Re, as for the classical entrance problem of 
a straight channel (Schlichting 1968). For such correlations in terms of y / R e ,  we 
eliminated the values corresponding to the end regions (in order to avoid the direct 
endwall effects) ; the results are presented in figures 19 (a ) ,  19 (b )  and 19 (c) for A = 
4, A = 12.5 and A = 25, respectively. This similarity in terms of y / R e  can also be Been 
in figure 20 in which w,,,~ is plotted for the three different A ,  for Re = 3.33 x 102 and 
R e  = 3.33 x lo3. From figures 19 and 20, a development length, l,, at which 2iSurf 

approaches the limiting value 0.25 to within 1%, can be evaluated. This length, 
based on H ,  corresponds approximately to 

1, = 0.025 Re. (11)  
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(a) 0 < y/A 6 0.5 and (b)  0.5 6 y/A Q 1. 

It can be compared to the inlet length for a straight channel, 1,lH = 0.04 Re, where 
Re is based on the height of the channel and the entrance velocity (Schlichting 1968). 
Thus we can define a condition (linking Re and A )  for the observability of the fully 
developed Poiseuille-Couette flow at the mid-cavity, i.e. 1, d &I. From (l l) ,  this 
condition simply becomes 

(12) Re < 20A. 

Another interesting feature is that, for a given Re < 2 x lo3, the y-position of the 
extrema of vSurf along the cavity in the downwind region appears to be almost the 
same for A = 12.5 and A = 25. This can be seen by comparing figures 21 (a )  and 21 (b ) ,  
for Re = 1.33 x 108 and Re = 2 x lo3, respectively. For higher Re (see figures 21 ( c )  and 
21 ( d )  for Re = 3.33 x lo3 and Re = 6.67 x 103, respectively) the confinement effect 
becomes more and more evident. This can also be seen by comparing the (steady) 
flow patterns for A = 12.5 and A = 25, respectively in figures 11 and 12 (for various 

4-2 
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FIQURE 17. Surface velocity versus y/A at A = 25 for various Re in the range 
6.67 x 10' < R e  < 6.67 x lo2; (a) 0 < y/A < 0.5 (upwind) and (b) 0.925 S y/A < 1 (downwind). 

Reynolds numbers). I n  particular, for Re = 2 x lo3 a third vortex is shown to exist 
a t  A = 25 (figure 12e) and not a t  A = 12.5 (figure l l e ) ;  this is attributed to a 
confinement (viscous damping) effect. Similarly, for Re = 1.33 x 104 a fourth vortex 
exists a t  A = 25 (figure 12 j ) ,  and not a t  A = 12.5 (figure l l j ) .  

The computations did not show any evidence of oscillatory behaviour in the whole 
range of Re and A considered herein (Re < 5 x lo4 for A = 4 ;  Re < 2 x lo4 for A = 
12.5; Re < 1.67 x lo4 for A = 25) .  Of course this is not in contradiction with the 
stability results given by Smith & Davis (1983), as our model is limited to rectangular 
(two-dimensional) cavities with conducting horizontal boundaries, while the onset of 
oscillatory instabilities predicted by Smith & Davis (1983) correspond to undamped 
three-dimensional disturbances in the case of prescribed heat flux. (We note, in 
addition, that the stability theory of Smith & Davis (1983) applies only for 
disturbances superimposed on the fully developed Poiseuille-Couette flow, which 
only exists when condition (12 )  is satisfied.) The steady behaviour given by the 
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calculations is in agreement with the experimental results reported by Camel et al. 
(1986) for a long cavity filled with liquid tin (Pr = 0.015). 

Comparisons between experimental (Camel et al. 1986) and numerical results 
concerning the surface velocity have been given in a previous paper by Ben Hadid 
et al. (1988) for four aspect ratios, A = 2, 4, 12.5 and 25. There is good agreement 
between these results, especially for high values of Reynolds number where a 
boundary-layer regime prevails. This boundary-layer regime has been shown to 
occur for Re/A > 200, and the computed surface velocities at y = $A (still non- 
dimensionalized by Re v / H ) ,  which were correlated in terms of Reynolds number and 
aspect ratio, exhibited the following behaviour : 

(13) 

In fact this result can be compared, as kindly suggested by one of the referees, to 
the classical shear-driven boundary-layer solution (based on the balance between 

vsurp,y+A w a(Re/A)-i, with a w 0.95. 
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FIGURE 20. Correlation giving vsurf versus ylRe in the upwind region for different A ,  at Re = 
3.33 x lo2 and Re = 3.33 x lo3. 

inertia and viscous forces), which states that for a given (constant) shear stress, X = 
ar/ay* = ,dv*/ax*, the flow is driven in a thin layer of thickness a* near the 
interface, such that (when using primitive variables) : 

and 

av* azv* 

ay* ax*2 
V*- x V- (inertia and viscous forces balance) 

av* 
P & p % f l  (boundary condition). 

From (15), the thickness of the surface-driven flow is given by 6* cc pv*/S. Inserting 
this expression in (14) leads to the relation v * ~  cc S2uy*/,uu2, and thus 

and 

v* K [S”*/(p”)]~ 
6* a (y*pv2/S$. 

Thus, using the previous non-dimensionalization, we get 

6 = 6*/H a (y/Re)i .  

The computed values of v ~ , , ~  for Re = 3.33 x lo3, Re = 5 x lo3, Re = 6.67 x lo3 and 
Re = lo4, are given in logarithmic coordinates in terms of y /Re  in figure 22. The four 
corresponding curves reach the slope for y /Re  larger than about 2 x at Re = 
3.33 x 103 and for even smaller y /Re  at higher Re. Of course, for the lowest Re (Re = 
3.33 x lo3) where fully developed Poiseuille4ouette flow can be reached, the slope 
decreases and vanishes for high y /Re .  
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5. Conclusions 
A numerical simulation of the flow driven by thermocapillary forces on the free 

surface of a long horizontal layer subjected to a horizontal temperature gradient has 
been carried out for different aspect ratios and a wide range of values of the 
Reynolds-Marangoni number, 0 < Re < 5 x lo4. 

In the case of low-Prandtl-number fluids (Pr = 0.015) considered herein, it appears 
that the flow field is almost independent of the temperature field. As an example, for 
aspect ratio A = 4 we have shown that the flow field and the surface velocity are 
essentially the same for both insulating and conducting horizontal walls. Most of the 
results presented concern the conducting case, for which the driving forces are 
constant along the free (upper) surface of the cavity. In  that case the flow field is 
strictly independent of the thermal field inside the fluid layer (the buoyancy forces 
being neglected). 

FIGURE 21 (a, b ) .  For caption see facing page. 
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FIQURE 21. Surface velocity versus y in the downwind region for A = 12.5 and A = 25; 
for (a) Re = 1.33 x lo3; (b )  2 x lo3; (c) 3.333 x lo3; (d )  6.667 x lo8. 

For small Re the flow is shown to reach the fully developed Poiseuille4ouette flow 
solution (valid for infinitely long layers) in the central region of the cavity. In 
addition to this central region, two other characteristic regions have been identified : 
an upwind region in which the flow is accelerated to reach this Poiseuilldouette 
solution, and a downwind region in which the flow is decelerated and deflected by the 
endwall at y = A .  A condition for the observability of the Poiseuilldouette flow is 
derived as Re < 20A (condition (12)). For high Re, exceeding this value, the surface 
velocity is smaller than the value 0.25 corresponding to the Poiseuillecouette 
solution at  2 = 1. The length of the region of fully developed Poiseuill4ouette flow 
is reduced and even disappears, when Re increases ; this means that the upwind and 
downwind regions then occupy an increasing part of the cavity and finally coalesce. 

The downwind region exhibits a complex structure, in particular for the high 
aspect ratios. When Re increases, a multi-vortex pattern is obtained in which the 
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FIGURE 22. Surface velocity versus ylRe for A = 25, for Re = 3.333 x lo3, 5 x lo3, 6.667 x lo* 
and lop.  

number of vortices increases with Re. However, the number of vortices does not 
depend on A ,  as long as the condition (12) is satisfied. When this condition is not 
satisfied some of the vortices are suppressed. 

For all the values of Re and A considered in the present study, no evidence of 
oscillatory behaviour has been found, in agreement with experimental results 
reported by Camel et al. (1986). 
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